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Abstract-A study is made of natural convection in an annular fluid layer confined between two horizontal 
cylindrical boundaries rotating at the same angular velocity. The problem is solved for two-dimensional 
Row with isothermal boundaries, the outer boundary being warmer, using perturbation and numerical 
methods. The weak rotation regime only is considered, for which centrifugal acceleration is neglected. 
Governing equations for the flow field are solved in a non-inertial coordinate system rotating with the 
boundaries, in order to remove uniform, solid-body rotation effects from the pure natural convection flow. 
Results reveal that a significant mass of fluid far from the boundaries remains tied up to the gravity vector 
at first, when the angular velocity is small, and thus does not take part in the solid-body rotation. This 
creates a net circulating flow around the annulus in the rotating system, the intensity of which is shown 
analytically to be proportional to Ra’ Re for incipient convection. Perturbation solutions are in good 
agreement with numerical data for Rayleigh numbers up to several hundreds, depending on the radius 
ratio. At high Rayleigh numbers, a bifurcation exists between the circulating and solid-body rotation flow 
regimes, in contrast with the smooth transition observed at lower Rayleigh numbers. Hysteresis effects are 
observed over a certain range of Reynolds numbers, provided that the Rayleigh number is high enough. 

1. INTRODUCTION 

THE GENERAL problem of natural convection in rotat- 
ing systems has been the subject of a great deal of 
investigations so far. While rotation about a vertical 
axis has been studied intensively, since this con- 
figuration is frequently encountered in engineering 
problems, comparatively little work has ever been 
done on low-speed rotation about an horizontal axis, 
which is also of practical importance. The relevant 
fields of application include crystal growth [l] and the 
processing of canned liquids [2, 31, among others. In 
the latter case, the processing often involves some 
form of thermal treatment while the can is rotating. 
The heat transfer rates can be significantly affected 
by the flow established within the liquid under the 
combined influences of rotation and buoyancy. 

Free convection between two horizontal isothermal 
cylinders, with the stationary outer cylinder and the 
inner cylinder rotating about its axis at constant angu- 
lar velocity, was considered by Lee [4] and Fusegi et 
al. [S]. The analysis was restricted in both cases to the 
cross-sectional plane and did not allow for the three- 
dimensional effects resulting from the appearance of 
Taylor vortices. In this respect, the authors pur- 
posedly limited their numerical calculations to a range 
of parameters that would exclude this possibility from 
the start. Lee treated the problem over a good range 
of Rayleigh numbers, allowing for both horizontal 
and vertical eccentricities of the inner cylinder. It was 
concluded that the mean Nusselt number increases 
with the Rayleigh number at a given angular velocity, 
and decreases with the rotation speed, all the other 

parameters being kept constant. Fusegi et al. did not 
consider the eccentric case but treated the problem for 
both high and low values of the densimetric Froude 
number e (which expresses the relative magnitude of 
buoyancy versus rotation effects), whereas Lee had 
focused mainly on the low u results. Using an unusual 
velocity-vorticity formulation, which proved to be 
very stable numerically, they reached similar con- 
clusions. 

Yang et al. [I] studied natural convection inside a 
single horizontal rotating cylinder, with both ends 
maintained at different temperatures. In that case, 
the pure conduction heat transfer is present in the 
horizontal direction. They formulated the problem in 
both inertial and non-inertial frames and found a 
steady-state flow regime in the inertial frame. Accord- 
ing to their results, free convection affects the heat 
transfer rates mainly at low rotation speeds. Increas- 
ing the rotation speed resulted in almost a solid-body 
rotation flow for which heat transfer rates returned to 
their pure conduction levels. The effects of rotation on 
an annular saturated porous layer were investigated 
recently by Robillard and Torrance [6]. A net cir- 
culating flow around the annulus relative to the solid 
matrix was detected and the convective heat transfer 
was found to decrease monotonically to zero with 
increasing rotation speed. Subsequently, Ladeinde 
and Torrance [7] treated the case of a rotating hori- 
zontal cylinder with constant volumetric heating and 
fixed wall temperature, using a finite element solution 
procedure. Unlike all the studies quoted above, they 
did not make the weak rotation approximation which 
drops radial acceleration in the Boussinesq term, but 
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NOMENCLATURE 

9 gravity [m s ‘1 
i unit vector along gravity 
J Bessel function of the first kind 
K modified Bessel function of the second 

kind 
Nu average Nusselt number 
P pressure [Pa] 
Pr Prandtl number, v/u 
r radial coordinate [m] 
R aspect ratio, rz/rI 
Re Reynolds number, !&f/v 
Ra Rayleigh number, /l( Tz - T,)r;g/va 
I time [s] 
T temperature [C] 
II velocity vector, (u, II) [m s- ‘1 
i unit vector normal to the r, 0 plane. 

Greek symbols 

; 
thermal dilTusivity [m’s- ‘1 
thermal expansion coefficient [K ‘1 

0 angular coordinate 

V kinematic viscosity [m’s- ‘1 
P density [kg m- ‘1 
0 densimetric Froude number, Ra/Re’Pr 
5 net shear torque 

parameter 
T stream function [m’s- ‘1 
VI net circulating flow [ml s- ‘1 

vorticity [so ‘1 
;;: angular velocity [s- ‘1. 

Subscript and superscripts 
1 value at the inner cylinder 
2 value at the outer cylinder 

value in the rotating frame. 

Other symbols 
V gradient 
V. divergence 
V’ Laplacian 
Vx curl 
X cross-product. 

introduced a second Rayleigh number based on 
radial acceleration in addition to the usual gravity- 
based Rayleigh number. It was found that when radial 
acceleration dominates over gravity (strong rotation), 
steady-state flows are obtained in the rotating 
coordinate system. There is a critical Rayleigh number 
needed to establish the initial two-cell state and the 
subsequent flow patterns are multicellular. For weak 
rotation, the flow is bicellular and steady in the inertial 
coordinate system. When radial acceleration and 
gravity are comparable, complex time-dependent 
solutions result in both systems and the largest flow 
and heat transfer rates are found. For both weak and 
strong rotation, there is also an optimum Reynolds 
number based on the rotation speed that gives the 
maximum effect of gravity. It was once again con- 
firmed that for weak rotation, if the Reynolds number 
becomes larger than the optimum value, the flow field 
approaches solid-body rotation in the inertial frame 
and the temperature field approaches the pure con- 
duction state. 

force becomes the main body force (Benard cells are 
then expected to occur beyond a critical Reynolds 
number, with their axes parallel to the rotation axis, 
e.g. Busse [9]) and concentrate on the low rotation 
regime, where gravity is the main body force, 
assuming a two-dimensional flow in the r, 0 plane. 

2. MATHEMATICAL FORMULATION 

The problem at hand is better solved numerically 
in the non-inertial coordinate system rotating along 
with the enclosure at constant angular velocity R 
shown in Fig. 1. The analysis will then be carried out 
in terms of the relative flow field u’ induced by the 
sole natural convection effects, that is, what would 
appear to an observer fixed with respect to the rotating 
boundaries. 

In the present paper, it will be shown that multiple 
solutions can be obtained for weak rotation and the 
abrupt transitions are possible between a solution 
involving significant buoyancy effects and a solution 
very near solid-body rotation, a previously unre- 
ported feature for this type of flow. The geometry 
being considered is an horizontal annular cavity rotat- 
ing about its axis at constant angular velocity as 
shown in Fig. 1. Isothermal boundary conditions are 
prescribed at both walls, the outer being warmer. 
Kuehn and Goldstein [8] investigated this flow con- 
figuration in the absence of rotation. We exclude from 
the start high rotation speeds where the centrifugal 

The problem will be formulated with the help of 
the standard Boussinesq approximation, neglecting 
centripetal acceleration in the thermal expansion 
term, for a fluid of constant thermal properties. The 
governing equations in the rotating frame are then 
readily obtained from the theory of rotating flows, as 
exposed in Greenspan [lo]. Introducing the appro- 
priate variables 

r* = r/r, (cd’, lx)* = (u’,u’)r,/a 
t* = d/r; P* = pdr?IP Ia* 

CD* = ,:,/a dJ* = $/a 
T* = (T-T,)/(T?-T,) 

where pd = p-p,g’.r’-p&l%*/2 stands for the 
dynamic pressure. Dropping the asterisks from now 
on, the problem can be stated as follows 
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inertial frame rotating frame 

FIG. I. Geometry and coordinate system. 

V-u’ = 0 (1) 

Du’ 
E+2RePrixu’= -Vp+PrV’u’-PrRaTg’ (2) 

DT - = V’T 
Dt 

In the momentum equation (2), Ra = /?(Tz - T,) 
x rig/~ is the Rayleigh number based on gravity, and 
Re = Qrf/v is the rotational Reynolds number. In 
a more general formulation which does not neglect 
the centripetal acceleration in the Boussinesq term, 
an additional Rayleigh number Ran = /?(T,- T,) 
xrfR’/va would appear on the right-hand side. 
However, only weak rotations are considered, namely 
Ra, << Ra. This simplification will lead to steady/time- 
periodic streamline patterns in the inertial/rotating 
frame and is only mildly restrictive. As a matter of 
fact, a quick calculation for water at room tempera- 
ture, considering a 5 cm gap between the cylinders, 
shows that Ra, is still three orders of magnitude 
smaller than Ra when Re = 1000. 

The temperature field satisfies the Dirichlet bound- 
ary conditions 

T=O; r=l (4) 

T=l; r=R (5) 

and the velocity field vector components obey the 
usual no-slip conditions. The pressure gradient and 
the Coriolis force are eliminated at once by taking the 
curl of (2), which yields the equation 

DfiI’ 
-= PrV20’-PrRaVx T$ 

Dt (6) 

for the dimensionless relative vorticity 

I &v’ 1 au oj’=----- 
r ar r ao’ (7) 

Velocity components and vorticity itself may be 
expressed in terms of the relative stream function t,Y 
as 

I a*’ at=-- 
r do 

WI = -v’*’ (10) 
and the continuity equation (I) is then identically 
satisfied. It is appropriate here to point out that the 
relative velocities, vorticity and stream function in 
the rotating frame are simply related to their inertial 
counterparts by 

u = u’+RePrixr’ (11) 

o = o’f2Re Pr (12) 

I) = q+ !?p(R’-r’) 

while the components of a general vector f transform 
according to 

f: (> [ cos(rp) sin (~1 fi 
.fi = Ii 1 -sin (cp) cos (cp) f2 (14) 

where 

cp = RePrt+O. (15) 

Thus, for instance, the components of the unit vector 
8’ are obtained by setting 4, = 1 and Qz = 0, 
respectively. Using the latter, the curl appearing in (6) 
can be expressed in the local r,0 coordinates of the 
non-inertial frame, giving the vorticity equation in its 
final form 

De/ 
~ = PrV2w’ 
Dt 

dT 
+PrRa 

cos (cp) 
gsin(rp)+--- r do (16) 

Moreover, periodicity of the solution in the rotating 
frame requires that all field variables be functions of 
(r, cp) only. It is possible therefore to get a formulation 
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in terms of T(r, (p) and Il/‘(r, cp) which is better suited 
for perturbation methods. Combining (10) and (16) 
and changing variables gives 

The value of II/’ may be arbitrarily fixed on only one 
of the boundaries. Assuming that 

II/‘=II/‘,; )‘= I (19) 

t,!/=O; r=R (20) 

where II/‘, corresponds to the relative flow rate around 
the annulus whose value has yet to be determined. 
Two additional boundary conditions follow from the 
no-slip condition at the walls, namely 

(21) 

A fourth condition may be obtained by taking 
advantage of the constant wall temperatures. Inte- 
grating (2) around the outer boundary yields 278 s I & dO = 0. 

0 dr r=R 
(23 

3. METHODS OF SOLUTION 

3. I. Nunwrical solution 

Solutions for the temperature and relative flow 
fields may be obtained by standard finite-difference 
methods. The governing equations (3) and (I 6) for 
temperature and vorticity are solved with the help of 
the alternating direction implicit method (ADI). A 
successive overrelaxation method (SOR) is used to 
solve the Poisson equation (10) for the stream 
function. All derivatives are discretized according to 
the usual Taylor-based, second order central differ- 
ence scheme for a regular mesh size. Computations 
are carried out at each time step, using the latest 
available field values to get the new T, I,//, w’ values 
and making only one field sweep per step to calculate 
T and 0’. 

Periodic boundary conditions are used in the O- 
direction for all variables. Although (IO) could in 
theory be used to provide boundary values for vor- 
ticity at r = I and r = R, it turns out to be more 
practical, from a numerical point of view, to obtain 
them as follows. Performing a power series expansion 
in Ar of the stream function at, say r = R, expressing 
next the derivatives of $ at r = R in terms of w from 
(IO) and using the no-slip condition yields 

+(R-Ar,O)=$-wG+ g-r A; (23) 
( > 

correct to third order, where the right-hand side is 
evaluated at r = R. The remaining derivative is then 
discretized and the equation solved for w at the wall 
in terms of quantities known from the last iteration. 

When the II/’ equation is being solved, the value 
at the inner wall is not known explicitly, but only 
implicitly through the set of boundary conditions 
(l9)-(22). In order to find the right value, an alter- 
native approach is used which does not require the 
integral relation (22). Integrating r x Du’/Dt over the 
annulus, using periodicity, leads after a few simpli- 
fications to W’ a +RoPrTsin(cp) 

which expresses the torque equilibrium, with respect 
to the geometric center of the cavity, between the 
inertial. gravitational and viscous forces in the rotat- 
ing frame. The value of I/Y, can be adjusted once equa- 
tion (IO) has been solved so that the above is satisfied. 
The correction can be made just once every time step 
as mentioned by Prud’homme et al. [I I]. The accuracy 
of the numerical calculations was checked by repeat- 
ing the computations of Kuehn and Goldstein [8] for 
a non rotating annulus. The results for the Nusselt 
number at Ra = 24212 for R = 2.6 and Pr = 5 agreed 
within l&2%. All the present calculations with the 
rotating annulus were done with a time step 
At = 0.0005, after testing with At = 0.0002 showed 
that the larger step could be used without affecting 
the results. A grid dependence test was further made 
at Ra = 20000 which revealed that using a 27 by 54 
instead of an I8 by 36 uniform mesh barely changed 
the predicted average Nusselt number and extremum 
values of Ic, and produced virtually identical streamline 
and isotherm patterns. 

3.2. Perturbation solution 
One of the first features to be considered in a system 

rotating about a horizontal axis is the effect of incip- 
ient rotation combined with free convection, which 
locks a large mass of the fluid in the cavity to the 
gravity vector. How a weak rotation rate affects the 
symmetry of the two convection cells that are found 
when no rotation is present can be understood ana- 
lytically. We will now show that $‘, is, to the leading 
order, proportional to Ra* Re. The system (I 7), (I 8) 
together with the boundary conditions (4), (5) for T 
and (l9)-(22) for I,Y defines a regular perturbation 
problem. Expanding the field variables as 
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% 
T(r, cp) = c Rd’ T, 

"=-II 
(26) 

Table I. Value of C in (37) vs Pr and R 

Pr = 0.7 Pr = I Pr = 7 
and substituting into the governing equations yields 
for n 2 1 the sequence R= 1.5 -1.070~10~’ -1.413~10-~ -8.260~10-~ 

R = 2.0 -4.185 x IO-’ -5.518 x IO-’ -3.210x lO-6 

V*$, = Re%$ R = 2.5 -1.255~10~~ -1.652~10~~ -9.558x10-’ 
R=3.0 -1.336x10- -1.754~10~~ -1.010x10-’ 
R = 3.5 -8.125 x IO-’ - 1.065 x IO-’ -6.098 x IO-’ 

a&i av’4,,- ad4 aw,- 
R = 4.0 -3.487 x 10-j -4.561 x IO-’ -2.601 x IO-’ 

-)_-I 
aq ar ar ap 

+ 
ST,,- , cos (cp) ar,,- I ----sin(q)+------ (27) 

proceed with a second expansion of the form 
Jr r ap 4,=f,+Ref,+...in(30)andT,=g,+Reg,+... 

in (31) than to try to solve the set of equations for 
arbitrary Reynolds numbers. The second expansion 
gives 

(28) I sin (cp) 
where each 4,, must satisfy the original boundary con- V4fo = iR ___ 

r (33) 

ditions (l9)-(22) and each T,, the homogeneous 
Dirichlet conditions. The zeroth-order solution gives 
the pure conduction state, that is, 4,) = 0 and 

To = In (r)/ln R. (29) v’g, = I al 
m&i (35) 

The first-order equations read . 
dV%$, 

V”q5, = Rep 
I sin (cp) V2g, = Pr*+ 

I al‘, 
(36) 

acp +InR I (30) aq rn%’ 

Solution can be achieved by separation of variables 
V?T = Rep dT,+ ’ a4’ 

r aq az3$’ (31) 
as before, givingjb, J,, go, g, as linear combinations 
of terms of the form P Inh (r) multiplied by either 

A solution of (30) is readily found by separation of 
sin (cp) or cos (cp). Writing out (27) in full for n = 2, 

variables in terms of the Bessel functions of order one, 
an expansion 4Z = ho+ Reh, +. . , done along the 

giving 4, as twice the real part of same lines, shows that at any order in Re, all the terms 
in /r,, will also exhibit a similar angular dependence 

air+a$-’ +a:J,(i3” Re”‘r) 
and, again, vanish at r = I. On the other hand, /I, 
contains terms which are independent of cp and there- 
fore do not necessarily vanish at r = I, giving 

r In (r) 
+a:K, (ill’ Re’“r) + ~ elp (32) t+b’, = CRa’Re+... (37) 

4Reln R 

where a;.~:, a:,~: are complex coefficients to be 
determined from the boundary conditions. In the 
above expression, J, is the Bessel function of the first 
kind, and K, is the modified Bessel function of the 
second kind. The real and imaginary parts of J,, K, 
are also known as the Kelvin functions of order one. 
In any case, with all the radial terms in (32) multiplied 
by either sin (cp) or cos (cp), the integral condition (22) 
becomes redundant, and the entire inner wall can be 
a streamline if 4, is locally zero there. The values 
of the four unknown coefficients are then found by 
requiring that 4, and its first derivative with respect 
to r vanish at both walls. 

in the first approximation, where C(R, Pr) is an intri- 
cate algebraic expression involving R, In R, Pr. Values 
of the coefficient C are given in Table I for several 
radii ratios and Prandtl numbers. 

Thus 4, has no contribution to rl/‘, and we need to 
seek higher-order terms in the expansion (25). 
Solving next for T, is an awkward task because 
the right-hand side of (31) now involves the com- 
plex Bessel (or Kelvin) functions. But since we are 
interested in only the initial effects of rotation, it is 
more convenient (and considerably simpler) to 

4. RESULTS 

All calculations were performed for a Prandtl num- 
ber Pr = I using the 18 by 36 uniform mesh, unless 
stated otherwise. Results are presented below versus 
Re at different Rayleigh numbers ranging from 
Ra = 0 to Ra = IO’. 

Typical streamline and isotherms obtained with the 
27 by 54 mesh for Ra = IO“ are depicted in Fig. 2, for 
a cavity aspect ratio R = 2, in both inertial and non- 
inertial frames. From left to right are shown the pat- 
terns corresponding to II/‘. T and rj respectively. 
Clockwise rotation is assumed throughout in the iner- 
tial frame, where the $ stream function is steady. The 
relative flow field is therefore time-periodic, with the 
I++’ streamlines rotating along with the gravity vector 
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in the counterclockwise direction. For convenience, regimes or flow behavior, illustrated by the streamline 
both flows are represented with the gravity vector patterns of Figs. 2(d) and 2(e) respectively. 
pointing downwards. The isotherms are, for course, 
identical in both frames. It is obvious from the figure 4. I. The shear and solid-hod,! rotation regimes 
that the original symmetry with respect to a vertical It is clear from the figure that Re,, lies between 74 
diameter, found when there is no rotation. disappears and 75 [or this Rayleigh number. Before the bifur- 
quickly as Re increases and a net circulating flow $‘, cation occurs, a significant mass of fluid in the annular 
is established around the annulus, as predicted by gap does not take part in the rotation but remains 
the perturbation analysis. The latter increases steadily essentially tied up to gravity. This gives rise to large 
with Re until a critical value Ret, is reached for which velocity gradients near the boundaries, as shown by 
a bifurcation occurs which sets apart two distinct the streamlines in the inertial frame, like in Fig. 2(d), 

FIG. 2. Streamlines and isotherms, Ra = 10000, R = 2. The IJ’ streamlines (left column) are rotating 
counterclockwise. The I(/ streamline graphs (right column) represent steady-state flows with boundaries 

rotating clockwise. 
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(d)  i-k=71 

! 

0 + I 
0 + 

(I) Re=lSO 

FIG. 2.-Continued. 

for instance. A relatively important torque is conse- 
quently imposed on the fluid through boundary shear 
forces, as depicted in Fig. 3. This torque is balanced 
by a countertorque due to gravity forces on the fluid 
of non-homogeneous density. The magnitude of this 
gravitational torque is closely related to the degree of 
asymmetry of the temperature field with respect to 
a vertical diameter. The increasing distortion of the 
isotherms maintains the equilibrium between the 
torques up to RE = 14. The range 0 -C Re c Ret,, 
characterized by an intense relative circulation 1(1’, 
around the annulus, accompanied by high levels of 

shear stress at the boundaries, could be called the 
shear regime therefore. 

The solid-body rotation regime takes place when 
Re exceeds the critical Recr value. When this happens, 
tj’, is drastically reduced and the shear flow regime 
cannot be sustained anymore. We notice a drastic 
change in the steamline and isotherm patterns between 
Figs. 2(d) and 2(e), showing a very different type of 
flow behavior. The paths of the fluid particles become 
almost circular in the inertial frame, and a new equi- 
librium prevails between the shear and gravitational 
forces, which implies a much lower level of shear 
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FIG. 3. Net shear torque on the fluid vs Re. Ra = 10000. R = 2. 

torque, as revealed by Fig. 3. As Re is increased further Figure 4 shows the relative flow rate $‘, circulating 
above 75, r+Y, decreases asymptotically toward zero around the annulus versus Re for R = 2 and Ra up to 
and the nearly pure solid-body rotation flow of Fig. IO’. The inclined straight dashed line represents the 
2(f) is achieved. limiting case of an inviscid fluid slipping at the walls. 

SW 

400 

3al 

-4: 
200 

4 

1:Ra=2oca 
2: Ra=3ooo 
3: Ra=5Lma 
4: Aa=loooo 

1: Ra=ZOCOO 
2: Ra=50000 
3: Ra=lOOOOO ,,,,,, 7 

FIG. 4. Relative flow rate around the annulus vs Re, R = 2. 
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I 9 Is . 
Q + 

I537 

0 

d,, = ’ 0 
+ $’ = -261 I,. 

3; = -261 

= 11.02 

= -31.65 

= -18.05 

A 

FIG. 5. Hysteresis effect, Ra = 50000, Re = 220, R = 2: (a) shear-flow regime; (b) solid-body rotation 
regime. 

In this hypothetical situation, there would be no net 
circulation in the inertial frame whatsoever. Setting 
therefore $ = 0 at r =. I in (13) gives 

as the initial slope for an inviscid fluid. The curves 
shown in Fig. 4 exhibit slopes almost as steep when 
Re + 0, and subsequently depart from the inviscid 

asymptote as Re increases. For an actual (i.e. viscous) 
fluid however, boundary layers are formed at the 
walls. This implies that without buoyancy effects, the 
whole mass of fluid is eventually entrained by momen- 
tum diffusion from the walls into a steady-state, solid- 
body rotation. Thus, IL’, = 0 when Ra = 0. 

The plots corresponding to the lower values of Ra 
show a progressive transition between the flow 
regimes as the circulation increases, goes through a 

1: Ra=2ow 
2: R.3=3WO 
3: R?l=scm 
4: Ra=lmml 
5: rQ=zWaO 

FIG. 6. Average Nusselt number at inner boundary vs Re, R = 2. 
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Fir;. 7. Onset of the relative flow rate r/j’, around the annulus: Solid line: numerical results; Inclined dashed 
lines: perturbation solution (37): Horizontal dashed lines: inviscid asymptote (38). 

maximum and dccrcascs. These trends are similar so 
far to those reported by Robillard and Torrance [6] 
in the case of an annular rotating porous layer. Unlike 
in the porous case. however. the present results show 
that a discontinuity in the I+// profiles gradually builds 
up with Rrr which sets apart the two regimes illustrated 
by the streamline patterns of Figs. 2(d) and 2(e) 
respectively. For Ru > 5 x IO’. the smooth transition 
is replaced by the bifurcation discussed earlier, which 
always occurs when rr is of order one that is. when 
rotation cffccts become strong enough to overcome 
buoyancy. This type of flow behavior was not 
observed in the rotating porous medium. For the 
latter, fluid entrainment is done locally throughout 
the annulus by the bulk rotation of the porous matrix, 
not by viscous diffusion from the boundaries. Conse- 
quently, it is impossible in the porous case for I++‘, to 
maintain its initial slope as Re increases. Going back 
to Fig. 4, a definite hysteresis effect is displayed at 
Rcr = 2 x 10” and above, allowing both solution 
regimes over a certain range of Reynolds numbers. 
The upper branch (solid curves), for increasing Rey- 
nolds numbers. may be obtained step by step. using 
the previous result at a lower Re as the initial condition 
for the next computation until transition occurs. The 
procedure is then reversed to get the lower branch 
(dashed curves). starting from the solid-body regime 
and decreasing Rr. The critical values are sharply 
defined for both solution branches. Transition occurs 
perhaps within an interval of less than one percent of 
Recrr which is also not very sensitive to grid refinement. 
However. subsequent testing revealed that R appears 
to be an influential parameter on hysteresis, as could 
be expected. For instance, increasing R reduces the 
range of Re over which both regimes are possible. 
Further investigation would be needed in order to 
obtain a complete description of the effects of this 
parameter. Figure 5 shows the two solutions that can 
bc obtained for Ra = 5 x IO4 and R = 2 in the region 

of overlap, at Re = 220. The difference in character is 
obvious from the ij patterns on the right. 

Average Nusselt numbers at the inner boundary, 
normalized by the value for pure conduction, defined 
as 

(39) 

are shown in Fig. 6. The plots of Nrr exhibit the same 
sharp transitions and hysteresis effects when Ra is 
high enough as the I+V profiles. However, some oscil- 
lations of NLI were found to occur on the lower branch 
of solution when hysteresis was present, and that for 
all grids and time steps used. So the dashed curve for 
Ru = 20000 has indicative value only. Initially, all the 
Nu profiles remain well above unity since the con- 
vective flow of the shear regime favors heat exchange 
between the boundaries. Convective heat transfer 
efficiency is directly related to the amplitude of the 
radial motion of the fluid particles, which remains 
important throughout the shear regime. as can be 
inferred from the steady II, streamline patterns of Figs. 
2(a)-(d). On the other hand, all profiles decrease 
toward the pure conduction unity value in the solid- 
body rotation regime. 

4.2. The onset qf‘circulution as Re + 0 
The initial effects of rotation on the convective flow 

were investigated numerically for several radii ratios 
of the cavity in order to assess the range of validity of 
(37). An interesting comparison between the ana- 
lytical and numerical results is provided in Fig. 7, 
where the inclined and horizontal dashed lines rep- 
resent the analytical solutions (37) for incipient con- 
vection and the inviscid asymptotes given by (38), 
respectively. Taking R = 2, that is, inner cavity radius 
equal to the annular gap, the agreement appears to be 
excellent up to Ra around 500. Departure from the 
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quadratic profiles (37) occurs with increasing Rrr and 
the numerical results subsequently show a tendency 
to level out below the inviscid asymptotes. as expected. 

5. CONCLUSION 

Analytical and numerical calculations were carried 
out to study mixed convection in a fluid filled annular 
region with boundaries rotating at the same angular 
velocity. Two Row regimes were distinguished : shear 
flow and solid-body rotation. The former is character- 
ized by the existence of a large fluid core tied up to 
gravity. which does not take part in the rotation 
around the cavity imposed by the solid boundaries. 
As a consequence. a significant flow rate is created 
around the annulus with respect to a rcfcrencc frame 
rotating with the boundaries. The onset of this Row 
has been shown analytically to be dependent upon the 
square of the Raylcigh number. Bifurcation is possible 
if the Rayleigh number is high enough. after which 
the shear regime ceases abruptly while the whole mass 
of fluid undergoes solid-body rotation and the heat 
transfer process reverts to pure conduction. At higher 
Rayleigh numbers hysteresis effects arc evidenced, 
with both regimes overlapping within a given range 
of Reynolds numbers. 
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